Exemplar progression in the written calculation of MULTIPLICATION

Year	Calculation method and examples	Guidance
R-I	Previous to Year 2, children should work using repeated addition (refer to the addition section of this policy), pictorial representation and kinaesthetic methods including Numicon, bead strings, counting equipment and also record in the standard notation for multiplication relating to times tables. Learners will be encouraged to generate their own pictorial representation. Counting will be practical and addition will be shown in sets resembling arrays and drawn on open number lines five sets of three: $5 \times 3=15$ Discuss the commutative law. Therefore 3×5 or 5×3 Count with money in denominations Pictures and objects We have 6 cakes put 2 on each plate. 3 plates, two cakes on each plate Real life counting activities e.g. pairs of shoes, pairs of socks, groups of fingers/toes, legs on a dog etc...	Introduce the operation x Introduce arrays Introduce repeated addition Introduce number bonds Introduce times tables 2, 5, 10 Introduce doubling Notation can be introduced by teachers from Year I(When is at the teachers' discretion).

2-3	Heavy emphasis is placed on times table learning - 2, $5 \& 10$ in year 2 followed by $3,4 \& 8$ in year 3 . Arrays showing links to division which should be accompanied by CONCRETES Reinforcement of multiplying by 10 and 100 and the effect this has on the place value of the digits using concretes and/or ICT visualised models to support. $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 100=600 \\ & 6 \times 20=6 \times 2 \times 10=120 \end{aligned}$	Children are expected to make arrays using whatever classroom concretes are available - Deinnes, counters, unifix blocks, lumps of cheese etc...
$3-4$ (Later in Year 3)	Grid Method of multiplication - multiplying by I digit and conforming to the times table requirements of the year group (2's, 3's, 4's, 5's, 8's, I0's)$37 \times 8=259$$x$ 30 7 8 240 56 296 Extend into bigger numbers using grid layout$238 \times 4$$x$ 200 30 8 4 800 120 32 952	This method will be the school's first expected method - introduction of standard written methods occur later in school. It should increase in difficulty throughout the child's journey within school and should be secure enough to offer a fall-back for those children who may struggle to grasp standard methods.

Exemplar progression in the written calculation of Division

Year	Calculation method and examples	Guidance
R-2	Children will be taught division through the use of visual and kinaesthetic grouping, sharing and chunking. Object and picture examples Numicon, drawings, counters, Deinnes or other: $12 \div 3=4$ 12 shared between 3 How many SETS of three are in twelve? How many SETS of 2 are in 8 ? $8 \div 2=4$ Or $25 \div 5=$	New Vernacular: Use of the word SETs no longer groups or lots. In R and the initial stages of YI + and \div are not used. This is preceeeded by continuous verbal and practical maths.

| 2-3 |
| :--- | :--- | | Number lines and Diagrammatic grouping |
| :--- |
| As in previous years, children should be aided by concretes to |
| remove SETS and help create visual models of their problems. In |
| Year 2 , abstract division should be preceded by division with image |
| or concrete aid to reinforce the essence of division. | | line is to stress the |
| :--- |
| relationship between |
| repeated subtraction |
| and division. |
| Division by repeated |
| subtraction is |
| represented by |
| counting back and |
| counting up. |

	The above method will link into the instruction of chunking as the first step in the extended written calculation of division, beginning with none-remainder problems and progressing to the use of remainders. $72 \div 5=14 r 2$ This method should be introduced alongside Deinnes to show the repetitive SETS of 5 that are being removed $\begin{array}{r} 14 \quad r 2 \\ 5 \begin{array}{r} 72 \end{array} \\ +50 \\ +20 \\ \hline 70 \end{array}$	If it is helpful, children should be encouraged to write lists of multiples at the side of their written calculations to aid them. This may also form part of the modelling of the strategy:
5	Informal methods using multiples of the divisor or 'chunking' $\mathbf{H T U} \div \mathbf{U}$ (including remainders) As in Year 4, but introducing CHUNKING DOWN as an alternative strategy, reinforcing the link between division and repeated subtraction. As methods become entrenched, class teachers should extend the use to 3-digit numbers.	Children will choose their own favoured method (chunking either up or down) but both should be modelled by the class teacher.

	$256 \div 7=36 r 4$ Chunking down using subtraction Chunking up using addition	
6	Informal methods using multiples of the divisor or 'chunking' $\mathbf{H T U} \div \mathbf{U} \& \mathbf{T U}$ (including remainders and decimals) $\begin{aligned} & H T U \div U \\ & 560 \div 24=23 \text { r8 } \end{aligned}$ 23 r 8 As understanding deepens, remainders become fraction - 8/24 and children are able to simplify to I/3	In Year 6 chunking should be done upwards (using addition) or downwards (using subtraction) in accordance with the students' personal preference. Teachers however, should continue to model both styles.

6	(Stage 2) $423 \div 5=86 \mathrm{r} 2$ $$ Answer: 86 r2 (Stage 3) $496 \div 11=45 \mathrm{rl}$ Answer: 45 rl leading to $45 \frac{1}{11}$ Long Division (All introduced to higher level children following chunking detailed for level 6)	Script: How many 5s are there in 430 ? Well, there are 85 s in 40 , so 80 in 400 . 80 . The answer goes here, in the tens column. There are 30 left over so we can record it here, just like when we exchange in subtraction. Now, how many 5 s are there in 32? 6. And how many remain? 2 This method will only be introduced to a section of more able children at the discretion of the current Year 6 teaching team. It may be used by children who have been taught this method at home - if this is the case, then the school will support this method if it being used successfully. It may also be suggested for any children who are still unable to grasp chunking, but whose further use and knowledge of Maths suggests that an alternate approach may be needed.

